Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 442
Filtrar
1.
Cell ; 187(8): 1907-1921.e16, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38552624

RESUMEN

Hydroxyproline-rich glycoproteins (HRGPs) are a ubiquitous class of protein in the extracellular matrices and cell walls of plants and algae, yet little is known of their native structures or interactions. Here, we used electron cryomicroscopy (cryo-EM) to determine the structure of the hydroxyproline-rich mastigoneme, an extracellular filament isolated from the cilia of the alga Chlamydomonas reinhardtii. The structure demonstrates that mastigonemes are formed from two HRGPs (a filament of MST1 wrapped around a single copy of MST3) that both have hyperglycosylated poly(hydroxyproline) helices. Within the helices, O-linked glycosylation of the hydroxyproline residues and O-galactosylation of interspersed serine residues create a carbohydrate casing. Analysis of the associated glycans reveals how the pattern of hydroxyproline repetition determines the type and extent of glycosylation. MST3 possesses a PKD2-like transmembrane domain that forms a heteromeric polycystin-like cation channel with PKD2 and SIP, explaining how mastigonemes are tethered to ciliary membranes.


Asunto(s)
Chlamydomonas reinhardtii , Cilios , Glicoproteínas , Cilios/química , Glicoproteínas/química , Glicosilación , Hidroxiprolina/química , Plantas/metabolismo , Chlamydomonas reinhardtii/química
2.
Amino Acids ; 55(11): 1655-1664, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37782378

RESUMEN

Vitamin C plays a very important role in the repair of connective tissue, especially for sports whose training causes the most damage to this tissue. Therefore, many people believe that L-ascorbic acid (C6H8O6: vitamin C) reduces the recovery time between sports exercises. The most abundant form of structural protein in the body is collagen. Collagen is characterized by a high concentration of the three amino acids glycine (Gly), proline (Pro), and hydroxyproline (Hyp), which creates its characteristic triple helix structure. Therefore, in this study, the effect of vitamin C presence on the sequence, interaction, and orientation of amino acids for collagen formation is investigated using computational simulation. This study aimed to investigate the mechanism of action of vitamin C in terms of thermodynamics and structure of the reaction. The calculations are performed using density function theory (DFT) by the base set of B3LYP/6-311++G (p,d). The results show that the presence of vitamin C is effective in the formation of collagen protein for this interaction and the mechanism of amino acid sequence (Gly-Hyp-Pro) is better in the formation of collagen protein in the presence of vitamin C. The presence of Vit-C in the formation and direction of hydroxyproline (Hyp) causes its separation from the prolyl 5-hydroxylase enzyme. In the absence of vitamin C, the reaction stops at this stage and proline cannot be converted into hydroxyproline. The computational data shows vitamin C prevents unwanted interactions and directs amino acid reactions to repair connective tissue (collagen). Therefore, vitamin C acts as a cofactor in the Prolyl 5-Hydroxylase enzyme and causes it to convert proline to hydroxyl.


Asunto(s)
Aminoácidos , Prolina , Humanos , Hidroxiprolina/química , Estructura Secundaria de Proteína , Prolina/química , Colágeno/química , Glicina , Ácido Ascórbico , Oxigenasas de Función Mixta
3.
Anal Methods ; 15(43): 5901-5908, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37902049

RESUMEN

This work describes the development of a flow injection method to determine hydroxyproline (HYP), one of collagen's most abundant amino acids. Collagen is a protein with several applications and high nutritional value. Evaluating the feasibility of using collagen from fish skin over its mammalian source is essential. The determination of HYP requires the pre-treatment and hydrolysis of the fish skin to break down collagen into its amino acids, and the HYP value quantified relates to the collagen content. The determination was based on the HYP oxidation with permanganate in an alkaline medium and the consequent decrease of colour intensity registered. Under optimal conditions, the developed method enables the determination of the HYP within the dynamic range of 23.8 to 500 mg L-1, with a limit of detection (LOD) of 2.6 mg L-1 and a limit of quantification (LOQ) of 23.8 mg L-1. Different samples were processed, and the digests were analysed by the proposed method and with the conventional procedure with good correlation (relative error < 7%). Moreover, the analyte quantification is performed faster, simpler, and more accurately, with less toxic solutions. The reproducibility of the developed method was also evaluated by calculating the relative standard deviation of the calibration curve slope (RSD < 1%).


Asunto(s)
Colágeno , Ictiosis Lamelar , Animales , Hidroxiprolina/análisis , Hidroxiprolina/química , Hidroxiprolina/metabolismo , Reproducibilidad de los Resultados , Colágeno/análisis , Colágeno/química , Aminoácidos , Hidrólisis , Mamíferos/metabolismo
4.
Biomacromolecules ; 24(11): 4653-4662, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37656903

RESUMEN

Collagen is one of the most studied proteins due to its fundamental role in creating fibrillar structures and supporting tissues in our bodies. Accordingly, collagen is also one of the most used proteins for making tissue-engineered scaffolds for various types of tissues. To date, the high abundance of hydroxyproline (Hyp) within collagen is commonly ascribed to the structure and stability of collagen. Here, we hypothesize a new role for the presence of Hyp within collagen, which is to support proton transport (PT) across collagen fibrils. For this purpose, we explore here three different collagen-based hydrogels: the first is prepared by the self-assembly of natural collagen fibrils, and the second and third are based on covalently linking between collagen via either a self-coupling method or with an additional cross-linker. Following the formation of the hydrogel, we introduce here a two-step reaction, involving (1) attaching methanesulfonyl to the -OH group of Hyp, followed by (2) removing the methanesulfonyl, thus reverting Hyp to proline (Pro). We explore the PT efficiency at each step of the reaction using electrical measurements and show that adding the methanesulfonyl group vastly enhances PT, while reverting Hyp to Pro significantly reduces PT efficiency (compared with the initial point) with different efficiencies for the various collagen-based hydrogels. The role of Hyp in supporting the PT can assist in our understanding of the physiological roles of collagen. Furthermore, the capacity to modulate conductivity across collagen is very important to the use of collagen in regenerative medicine.


Asunto(s)
Prolina , Protones , Hidroxiprolina/química , Prolina/química , Colágeno/química , Hidrogeles
5.
Angew Chem Int Ed Engl ; 62(3): e202214728, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36409045

RESUMEN

Collagen model peptides (CMPs) consisting of proline-(2S,4R)-hydroxyproline-glycine (POG) repeats have provided a breadth of knowledge of the triple helical structure of collagen, the most abundant protein in mammals. Predictive tools for triple helix stability have, however, lagged behind since the effect of CMPs with different frames ([POG]n , [OGP]n , or [GPO]n ) and capped or uncapped termini have so far been underestimated. Here, we elucidated the impact of the frame, terminal functional group and its charge on the stability of collagen triple helices. Combined experimental and theoretical studies with frame-shifted, capped and uncapped CMPs revealed that electrostatic interactions, strand preorganization, interstrand H-bonding, and steric repulsion at the termini contribute to triple helix stability. We show that these individual contributions are additive and allow for the prediction of the melting temperatures of CMP trimers.


Asunto(s)
Colágeno , Péptidos , Animales , Colágeno/química , Péptidos/química , Prolina/química , Hidroxiprolina/química , Glicina , Mamíferos
6.
Mater Horiz ; 9(11): 2698-2721, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36189465

RESUMEN

Collagen occurs in nature with a dedicated triple helix structure and is the most preferred biomaterial in commercialized medical products. However, concerns on purity, disease transmission, and the reproducibility of animal derived collagen restrict its applications and warrants alternate recombinant sources. The expression of recombinant collagen in different prokaryotic and eukaryotic hosts has been reported with varying degrees of success, however, it is vital to elucidate the structural and biological characteristics of natural collagen. The recombinant production of biologically functional collagen is restricted by its high molecular weight and post-translational modification (PTM), especially the hydroxylation of proline to hydroxyproline. Hydroxyproline plays a key role in the structural stability and higher order self-assembly to form fibrillar matrices. Advancements in synthetic biology and recombinant technology are being explored for improving the yield and biomimicry of recombinant collagen. It emerges as reliable, sustainable source of collagen, promises tailorable properties and thereby custom-made protein biomaterials. Remarkably, the evolutionary existence of collagen-like proteins (CLPs) has been identified in single-cell organisms. Interestingly, CLPs exhibit remarkable ability to form stable triple helical structures similar to animal collagen and have gained increasing attention. Strategies to expand the genetic code of CLPs through the incorporation of unnatural amino acids promise the synthesis of highly tunable next-generation triple helical proteins required for the fabrication of smart biomaterials. The review outlines the importance of collagen, sources and diversification, and animal and recombinant collagen-based biomaterials and highlights the limitations of the existing collagen sources. The emphasis on genetic code expanded tailorable CLPs as the most sought alternate for the production of functional collagen and its advantages as translatable biomaterials has been highlighted.


Asunto(s)
Materiales Biocompatibles , Colágeno , Animales , Hidroxiprolina/química , Reproducibilidad de los Resultados , Colágeno/genética , Código Genético/genética
7.
J Am Chem Soc ; 144(40): 18642-18649, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36179150

RESUMEN

Collagen model peptides (CMPs), composed of proline-(2S,4R)-hydroxyproline-glycine (POG) repeat units, have been extensively used to study the structure and stability of triple-helical collagen─the dominant structural protein in mammals─at the molecular level. Despite the more than 50-year history of CMPs and numerous studies on the relationship between the composition of single-stranded CMPs and the thermal stability of the assembled triple helices, little attention has been paid to the effects arising from their terminal residues. Here, we show that frame-shifted CMPs, which share POG repeat units but terminate with P, O, or G, form triple helices with vastly different thermal stabilities. A melting temperature difference as high as 16 °C was found for triple helices from 20-mers Ac-OG[POG]6-NH2 and Ac-[POG]6PO-NH2, and triple helices of the constitutional isomers Ac-[POG]7-NH2 and Ac-[GPO]7-NH2 melt 10 °C apart. A combination of thermal denaturation, circular dichroism and NMR spectroscopic studies, and molecular dynamics simulations revealed that the stability differences originate from the propensity of the peptide termini to preorganize into a polyproline-II helical structure. Our results advise that care must be taken when designing peptide mimics of structural proteins, as subtle changes in the terminal residues can significantly affect their properties. Our findings also provide a general and straightforward tool for tuning the stability of CMPs for applications as synthetic materials and biological probes.


Asunto(s)
Colágeno , Péptidos , Secuencia de Aminoácidos , Dicroismo Circular , Colágeno/química , Glicina , Hidroxiprolina/química , Péptidos/química , Prolina/química
8.
J Biol Chem ; 298(8): 102109, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35679897

RESUMEN

Collagenase from the gram-negative bacterium Grimontia hollisae strain 1706B (Ghcol) degrades collagen more efficiently even than clostridial collagenase, the most widely used industrial collagenase. However, the structural determinants facilitating this efficiency are unclear. Here, we report the crystal structures of ligand-free and Gly-Pro-hydroxyproline (Hyp)-complexed Ghcol at 2.2 and 2.4 Å resolution, respectively. These structures revealed that the activator and peptidase domains in Ghcol form a saddle-shaped structure with one zinc ion and four calcium ions. In addition, the activator domain comprises two homologous subdomains, whereas zinc-bound water was observed in the ligand-free Ghcol. In the ligand-complexed Ghcol, we found two Gly-Pro-Hyp molecules, each bind at the active site and at two surfaces on the duplicate subdomains of the activator domain facing the active site, and the nucleophilic water is replaced by the carboxyl oxygen of Hyp at the P1 position. Furthermore, all Gly-Pro-Hyp molecules bound to Ghcol have almost the same conformation as Pro-Pro-Gly motif in model collagen (Pro-Pro-Gly)10, suggesting these three sites contribute to the unwinding of the collagen triple helix. A comparison of activities revealed that Ghcol exhibits broader substrate specificity than clostridial collagenase at the P2 and P2' positions, which may be attributed to the larger space available for substrate binding at the S2 and S2' sites in Ghcol. Analysis of variants of three active-site Tyr residues revealed that mutation of Tyr564 affected catalysis, whereas mutation of Tyr476 or Tyr555 affected substrate recognition. These results provide insights into the substrate specificity and mechanism of G. hollisae collagenase.


Asunto(s)
Proteínas Bacterianas , Colágeno , Colagenasas , Vibrionaceae , Proteínas Bacterianas/química , Colágeno/química , Colagenasas/química , Hidroxiprolina/química , Especificidad por Sustrato , Vibrionaceae/enzimología , Agua/química , Zinc/química
9.
J Am Chem Soc ; 144(22): 9715-9722, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35611954

RESUMEN

Hydroxyprolines are highly abundant in nature as they are components of many structural proteins and osmolytes. Anaerobic degradation of trans-4-hydroxy-l-proline (t4L-HP) was previously found to involve the glycyl radical enzyme (GRE) t4L-HP dehydratase (HypD). Here, we report a pathway for anaerobic hydroxyproline degradation that involves a new GRE, trans-4-hydroxy-d-proline (t4D-HP) C-N-lyase (HplG). In this pathway, cis-4-hydroxy-l-proline (c4L-HP) is first isomerized to t4D-HP, followed by radical-mediated ring opening by HplG to give 2-amino-4-ketopentanoate (AKP), the first example of a ring opening reaction catalyzed by a GRE 1,2-eliminase. Subsequent cleavage by AKP thiolase (OrtAB) yields acetyl-CoA and d-alanine. We report a crystal structure of HplG in complex with t4D-HP at a resolution of 2.7 Å, providing insights into its catalytic mechanism. Different from HypD commonly identified in proline-reducing Clostridia, HplG is present in other types of fermenting bacteria, including propionate-producing bacteria, underscoring the diversity of enzymatic radical chemistry in the anaerobic microbiome.


Asunto(s)
Prolina , Proteínas , Anaerobiosis , Hidroxiprolina/química , Prolina/metabolismo , Proteínas/metabolismo
10.
mSphere ; 7(2): e0092621, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35350846

RESUMEN

An intact gut microbiota confers colonization resistance against Clostridioides difficile through a variety of mechanisms, likely including competition for nutrients. Recently, proline was identified as an important environmental amino acid that C. difficile uses to support growth and cause significant disease. A posttranslationally modified form, trans-4-hydroxyproline, is highly abundant in collagen, which is degraded by host proteases in response to C. difficile toxin activity. The ability to dehydrate trans-4-hydroxyproline via the HypD glycyl radical enzyme is widespread among gut microbiota, including C. difficile and members of the commensal Clostridia, suggesting that this amino acid is an important nutrient in the host environment. Therefore, we constructed a C. difficile ΔhypD mutant and found that it was modestly impaired in fitness in a mouse model of infection, and was associated with an altered microbiota when compared to mice challenged with the wild-type strain. Changes in the microbiota between the two groups were largely driven by members of the Lachnospiraceae family and the Clostridium genus. We found that C. difficile and type strains of three commensal Clostridia had significant alterations to their metabolic gene expression in the presence of trans-4-hydroxyproline in vitro. The proline reductase (prd) genes were elevated in C. difficile, consistent with the hypothesis that trans-4-hydroxyproline is used by C. difficile to supply proline for energy metabolism. Similar transcripts were also elevated in some commensal Clostridia tested, although each strain responded differently. This suggests that the uptake and utilization of other nutrients by the commensal Clostridia may be affected by trans-4-hydroxyproline metabolism, highlighting how a common nutrient may be a signal to each organism to adapt to a unique niche. Further elucidation of the differences between them in the presence of hydroxyproline and other key nutrients will be important in determining their role in nutrient competition against C. difficile. IMPORTANCE Proline is an essential environmental amino acid that C. difficile uses to support growth and cause significant disease. A posttranslationally modified form, hydroxyproline, is highly abundant in collagen, which is degraded by host proteases in response to C. difficile toxin activity. The ability to dehydrate hydroxyproline via the HypD glycyl radical enzyme is widespread among gut microbiota, including C. difficile and members of the commensal Clostridia, suggesting that this amino acid is an important nutrient in the host environment. We found that C. difficile and three commensal Clostridia strains had significant, but different, alterations to their metabolic gene expression in the presence of hydroxyproline in vitro. This suggests that the uptake and utilization of other nutrients by the commensal Clostridia may be affected by hydroxyproline metabolism, highlighting how a common nutrient may be a signal to each organism to adapt to a unique niche. Further elucidation of the differences between them in the presence of hydroxyproline and other key nutrients will be important to determining their role in nutrient competition against C. difficile.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Animales , Clostridioides , Clostridioides difficile/genética , Clostridium , Infecciones por Clostridium/metabolismo , Hidroxiprolina/química , Hidroxiprolina/metabolismo , Ratones , Péptido Hidrolasas , Prolina/metabolismo
11.
J Am Chem Soc ; 144(6): 2484-2487, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35107291

RESUMEN

Analyzing the δ2H values in individual amino acids of proteins extracted from vertebrates, we unexpectedly found in some samples, notably bone collagen from seals, more than twice as much deuterium in proline and hydroxyproline residues than in seawater. This corresponds to at least 4 times higher δ2H than in any previously reported biogenic sample. We ruled out diet as a plausible mechanism for such anomalous enrichment. This finding puts into question the old adage that "you are what you eat".


Asunto(s)
Colágeno/química , Deuterio/química , Hidroxiprolina/química , Prolina/química , Animales , Anseriformes , Huesos/química , Fibroblastos , Humanos , Ratones , Phocidae , Ursidae
12.
J Biol Chem ; 298(3): 101708, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35150746

RESUMEN

Early studies revealed that chicken embryos incubated with a rare analog of l-proline, 4-oxo-l-proline, showed increased levels of the metabolite 4-hydroxy-l-proline. In 1962, 4-oxo-l-proline reductase, an enzyme responsible for the reduction of 4-oxo-l-proline, was partially purified from rabbit kidneys and characterized biochemically. However, only recently was the molecular identity of this enzyme solved. Here, we report the purification from rat kidneys, identification, and biochemical characterization of 4-oxo-l-proline reductase. Following mass spectrometry analysis of the purified protein preparation, the previously annotated mammalian cytosolic type 2 (R)-ß-hydroxybutyrate dehydrogenase (BDH2) emerged as the only candidate for the reductase. We subsequently expressed rat and human BDH2 in Escherichia coli, then purified it, and showed that it catalyzed the reversible reduction of 4-oxo-l-proline to cis-4-hydroxy-l-proline via chromatographic and tandem mass spectrometry analysis. Specificity studies with an array of compounds carried out on both enzymes showed that 4-oxo-l-proline was the best substrate, and the human enzyme acted with 12,500-fold higher catalytic efficiency on 4-oxo-l-proline than on (R)-ß-hydroxybutyrate. In addition, human embryonic kidney 293T (HEK293T) cells efficiently metabolized 4-oxo-l-proline to cis-4-hydroxy-l-proline, whereas HEK293T BDH2 KO cells were incapable of producing cis-4-hydroxy-l-proline. Both WT and KO HEK293T cells also produced trans-4-hydroxy-l-proline in the presence of 4-oxo-l-proline, suggesting that the latter compound might interfere with the trans-4-hydroxy-l-proline breakdown in human cells. We conclude that BDH2 is a mammalian 4-oxo-l-proline reductase that converts 4-oxo-l-proline to cis-4-hydroxy-l-proline and not to trans-4-hydroxy-l-proline, as originally thought. We also hypothesize that this enzyme may be a potential source of cis-4-hydroxy-l-proline in mammalian tissues.


Asunto(s)
Aminoácido Oxidorreductasas , Hidroxibutirato Deshidrogenasa , Aminoácido Oxidorreductasas/química , Aminoácido Oxidorreductasas/metabolismo , Animales , Embrión de Pollo , Escherichia coli/metabolismo , Células HEK293 , Humanos , Hidroxibutirato Deshidrogenasa/química , Hidroxibutirato Deshidrogenasa/metabolismo , Hidroxiprolina/química , Hidroxiprolina/metabolismo , Mamíferos/metabolismo , Prolina/análogos & derivados , Prolina/metabolismo , Conejos , Ratas
13.
Eur J Med Chem ; 227: 113871, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34638033

RESUMEN

The ubiquitination of the hypoxia-inducible factor-1α (HIF-1α) is mediated by interacting with the von Hippel-Lindau protein (VHL), and is associated with cancer, chronic anemia, and ischemia. VHL, an E3 ligase, has been reported to degrade HIF-1 for decades, however, there are few successful inhibitors currently. Poor understanding of the binding pocket and a lack of in-depth exploration of the interactions between two proteins are the main reasons. Hence, we developed an effective strategy to identify and design new inhibitors for protein-protein interaction targets. The hydroxyproline (Hyp564) of HIF-1α contributed the key interaction between HIF-1α and VHL. In this study, detailed information of the binding pocket were explored by alanine scanning, site-directed mutagenesis and molecular dynamics simulations. Interestingly, we found the interaction(s) between Y565 and H110 played a key role in the binding of VHL/HIF-1α. Based on the interactions, 8 derivates of VH032, 16a-h, were synthesized by introducing various groups bounded to H110. Further assay on protein and cellular level exhibited that 16a-h accessed higher binding affinity to VHL and markable or modest improvement in stabilization of HIF-1α or HIF-1α-OH in HeLa cells. Our work provides a new orientation for the modification or design of VHL/HIF-1α protein-protein interaction inhibitors.


Asunto(s)
Diseño de Fármacos , Hidroxiprolina/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/antagonistas & inhibidores , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células HeLa , Humanos , Hidroxiprolina/síntesis química , Hidroxiprolina/química , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Simulación de Dinámica Molecular , Estructura Molecular , Unión Proteica/efectos de los fármacos , Relación Estructura-Actividad , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
14.
Amino Acids ; 54(4): 513-528, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34342708

RESUMEN

trans-4-Hydroxy-L-proline is highly abundant in collagen (accounting for about one-third of body proteins in humans and other animals). This imino acid (loosely called amino acid) and its minor analogue trans-3-hydroxy-L-proline in their ratio of approximately 100:1 are formed from the post-translational hydroxylation of proteins (primarily collagen and, to a much lesser extent, non-collagen proteins). Besides their structural and physiological significance in the connective tissue, both trans-4-hydroxy-L-proline and trans-3-hydroxy-L-proline can scavenge reactive oxygen species and have both structural and physiological significance in animals. The formation of trans-4-hydroxy-L-proline residues in protein kinases B and DYRK1A, eukaryotic elongation factor 2 activity, and hypoxia-inducible transcription factor plays an important role in regulating their phosphorylation and catalytic activation as well as cell signaling in animal cells. These biochemical events contribute to the modulation of cell metabolism, growth, development, responses to nutritional and physiological changes (e.g., dietary protein intake and hypoxia), and survival. Milk, meat, skin hydrolysates, and blood, as well as whole-body collagen degradation provide a large amount of trans-4-hydroxy-L-proline. In animals, most (nearly 90%) of the collagen-derived trans-4-hydroxy-L-proline is catabolized to glycine via the trans-4-hydroxy-L-proline oxidase pathway, and trans-3-hydroxy-L-proline is degraded via the trans-3-hydroxy-L-proline dehydratase pathway to ornithine and glutamate, thereby conserving dietary and endogenously synthesized proline and arginine. Supplementing trans-4-hydroxy-L-proline or its small peptides to plant-based diets can alleviate oxidative stress, while increasing collagen synthesis and accretion in the body. New knowledge of hydroxyproline biochemistry and nutrition aids in improving the growth, health and well-being of humans and other animals.


Asunto(s)
Proteínas en la Dieta , Prolina , Animales , Colágeno/química , Hidroxiprolina/química , Hipoxia , Prolina/química , Transducción de Señal
15.
Sci Rep ; 11(1): 18750, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34548594

RESUMEN

Collagens act as cellular scaffolds in extracellular matrixes, and their breakdown products may also have important biological functions. We hypothesize that collagen dipeptide Pro-Hyp induces favorable healing activities and examined the effects of Pro-Hyp administered via different routes on wound healing using our novel murine model, in which an advanced fibrosis-prone scar lesion was developed in the abdominal muscle wall under the skin. After excising a part of the abdominal wall, a free-drinking experiment was performed using solutions with casein (CS), high molecular weight collagen peptides (HP), and low molecular weight collagen peptides including Pro-Hyp and Hyp-Gly (LP), in addition to water (HO). On day 21 of the study, when compared to the HO and CS groups, muscle regeneration in the LP group was significantly advanced in the granulation tissue, which was associated with a decrease in fibrosis. To clarify the effects of Pro-Hyp, daily intraperitoneal administration of pure Pro-Hyp was performed. Pro-Hyp administration induced many myogenically differentiated cells, including myogenin-positive myoblasts and myoglobin-positive myocytes, to migrate in the granulation tissue, while scar tissue decreased. These results indicated that Pro-Hyp administration accelerates muscle regenerative healing accompanied by less scarring after wounding on the abdominal wall.


Asunto(s)
Pared Abdominal/patología , Cicatriz/prevención & control , Colágeno/química , Dipéptidos/farmacología , Hidroxiprolina/administración & dosificación , Músculos/fisiopatología , Prolina/administración & dosificación , Cicatrización de Heridas/efectos de los fármacos , Administración Oral , Animales , Diferenciación Celular/efectos de los fármacos , Dipéptidos/administración & dosificación , Dipéptidos/química , Hidroxiprolina/química , Ratones , Músculos/patología , Prolina/química , Regeneración/efectos de los fármacos
16.
Inorg Chem ; 60(19): 15010-15023, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34533947

RESUMEN

A novel catalyst has been afforded by attaching of a Cu(proline)2 complex to magnetic nanoparticles through cheap, simple, and readily available chemicals. This catalyst was characterized by Fourier transform infrared, energy-dispersive X-ray, X-ray diffraction, vibrating-sample magnetometry, transmission electron microscopy, scanning electron microscopy, and inductively coupled plasma analyses. The catalytic activity of the Fe3O4@NH2@TCT@HProCu nanocatalyst was investigated in a green and effective synthesis of pyran derivatives in high yields by applying three-component reactions of malononitrile, dimedone, and aldehydes in ethanol. Conversion was high under optimal conditions. The obtained nanocatalyst could be easily separated from the mixture of the reaction and was recyclable nine times via a simple magnet without considerable reduction of its catalytic efficiency. Operational simplicity, high product yields, environmental friendliness, ecofriendliness, economical processing, and easy workup are the features of this methodology.


Asunto(s)
Complejos de Coordinación/química , Cobre/química , Hidroxiprolina/química , Nanopartículas de Magnetita/química , Piranos/síntesis química , Catálisis , Complejos de Coordinación/síntesis química , Ciclización , Estructura Molecular , Piranos/química
17.
Bioorg Med Chem ; 48: 116398, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34547714

RESUMEN

Despite the success of imatinib in CML therapy through Bcr-Abl inhibition, acquired drug resistance occurs over time in patients. In particular, the resistance caused by T315I mutation remains a challenge in clinic. Herein, we embarked on a structural optimization campaign aiming at discovery of novel Bcr-Abl inhibitors toward T315I mutant based on previously reported dibenzoylpiperazin derivatives. We proposed that incorporation of flexible linker could achieve potent inhibition of Bcr-AblT315I by avoiding steric clash with bulky sidechain of Ile315. A library of 28 compounds with amino acids as linker has been developed and evaluated. Among them, compound AA2 displayed the most potent activity against Bcr-AblWT and Bcr-AblT315I, as well as toward Bcr-Abl driven K562 and K562R cells. Further investigations indicated that AA2 could induce apoptosis of K562 cells and down regulate phosphorylation of Bcr-Abl. In summary, the compounds with amino acid as novel flexible linker exhibited certain antitumor activities, providing valuable hints for the discovery of novel Bcr-Abl inhibitors to overcome T315I mutant resistance, and AA2 could be considered as a candidate for further optimization.


Asunto(s)
Alanina/farmacología , Diseño de Fármacos , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Hidroxiprolina/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Alanina/síntesis química , Alanina/química , Relación Dosis-Respuesta a Droga , Proteínas de Fusión bcr-abl/metabolismo , Humanos , Hidroxiprolina/síntesis química , Hidroxiprolina/química , Células K562 , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad
18.
Chem Pharm Bull (Tokyo) ; 69(7): 652-660, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34193714

RESUMEN

The hydrocarbon-chain packing structure of intercellular lipids in the stratum corneum (SC) is critical to the skin's barrier function. We previously found that formation of V-shaped ceramide reduces the barrier function of skin. There are few agents, apart from ceramides and fatty acids that can improve the orthorhombic packing (Orth) ratio of the intercellular lipid packing structure. In this study, we investigated agents that directly increase the Orth ratio. We selected an intercellular lipid model consisting of ceramide, cholesterol, and palmitic acid and performed differential scanning calorimetry. We focused on natural moisturizing factor components in the SC, and therefore investigated amino acids and their derivatives. The results of our intercellular lipid model-based study indicate that N-acetyl-L-hydroxyproline (AHYP), remarkably, maintains the lamellar structure. We verified the effect of AHYP on the lamellar structure and hydrocarbon chain packing structure of intercellular lipids using time-resolved X-ray diffraction measurements of human SC. We also determined the direct physicochemical effects of AHYP on the Orth ratio of the hydrocarbon-chain packing structure. Hence, the results of our human SC study suggest that AHYP preserves skin barrier function by maintaining the hydrocarbon-chain packing structure of intercellular lipids via electrostatic repulsion. These findings will facilitate the development of skincare formulation that can maintain the skin's barrier function.


Asunto(s)
Aminoácidos/metabolismo , Absorción Cutánea , Acetilación , Aminoácidos/química , Rastreo Diferencial de Calorimetría , Colesterol/química , Epidermis/química , Humanos , Hidroxiprolina/química , Hidroxiprolina/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Nanoestructuras/química , Ácido Palmítico/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X
19.
Int J Mol Sci ; 22(14)2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34299166

RESUMEN

As cell wall proteins, the hydroxyproline-rich glycoproteins (HRGPs) take part in plant growth and various developmental processes. To fulfil their functions, HRGPs, extensins (EXTs) in particular, undergo the hydroxylation of proline by the prolyl-4-hydroxylases. The activity of these enzymes can be inhibited with 3,4-dehydro-L-proline (3,4-DHP), which enables its application to reveal the functions of the HRGPs. Thus, to study the involvement of HRGPs in the development of root hairs and roots, we treated seedlings of Brachypodium distachyon with 250 µM, 500 µM, and 750 µM of 3,4-DHP. The histological observations showed that the root epidermis cells and the cortex cells beneath them ruptured. The immunostaining experiments using the JIM20 antibody, which recognizes the EXT epitopes, demonstrated the higher abundance of this epitope in the control compared to the treated samples. The transmission electron microscopy analyses revealed morphological and ultrastructural features that are typical for the vacuolar-type of cell death. Using the TUNEL test (terminal deoxynucleotidyl transferase dUTP nick end labelling), we showed an increase in the number of nuclei with damaged DNA in the roots that had been treated with 3,4-DHP compared to the control. Finally, an analysis of two metacaspases' gene activity revealed an increase in their expression in the treated roots. Altogether, our results show that inhibiting the prolyl-4-hydroxylases with 3,4-DHP results in a vacuolar-type of cell death in roots, thereby highlighting the important role of HRGPs in root hair development and root growth.


Asunto(s)
Apoptosis , Brachypodium/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Prolina/farmacología , Brachypodium/metabolismo , Hidroxiprolina/química , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Prolina/análogos & derivados
20.
Chem Biodivers ; 18(8): e2100293, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34156756

RESUMEN

Acid-soluble, undenatured, type I collagen (BSC) isolated, for the first time, from gilthead bream skin and the novel fabricated 3D porous wound dressing were analyzed for physicochemical and biological properties, in order to offer a safe alternative to commercial bovine collagen (BC) products. SDS-polyacrylamide analysis confirmed the purity of BSC preparation. The hydroxyproline content and temperature of denaturation of BSC were lower than those of BC, in accordance with the structural data recorded by FT-IR spectroscopy. However, certain concentrations of BSC stimulated the cell metabolism of L929 fibroblasts in a higher proportion than BC. The 3D wound dressing presented high porosity and low surface hydrophobicity that could help cell attachment and growth. The rapid biodegradation of BSC wound dressing could explain the improved in vitro cell migration and wound closure rate. In conclusion, the skin of gilthead bream from the Black Sea coast represented a valuable source for the biomedical industry, providing biocompatible, biodegradable collagen and 3D porous wound dressing, as novel material with enhanced wound healing activity.


Asunto(s)
Vendajes , Colágeno Tipo I/farmacología , Dorada/metabolismo , Piel/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Animales , Mar Negro , Línea Celular , Supervivencia Celular/efectos de los fármacos , Colágeno Tipo I/aislamiento & purificación , Colágeno Tipo I/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Hidroxiprolina/química , Hidroxiprolina/metabolismo , Ratones , Peso Molecular , Porosidad , Desnaturalización Proteica , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura de Transición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...